skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schaeffer, Luke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. On the Rational Degree of Boolean Functions and Applications Vishnu Iyer, Siddhartha Jain, Matt Kovacs-Deak, Vinayak M. Kumar, Luke Schaeffer, Daochen Wang, Michael Whitmeyer We study a natural complexity measure of Boolean functions known as the (exact) rational degree. For total functions f, it is conjectured that rdeg(f) is polynomially related to deg(f), where deg(f) is the Fourier degree. Towards this conjecture, we show that symmetric functions have rational degree at least deg(f)/2 and monotone functions have rational degree at least sqrt(deg(f)). We observe that both of these lower bounds are tight. In addition, we show that all read-once depth-d Boolean formulae have rational degree at least Ω(deg(f)1/d). Furthermore, we show that almost every Boolean function on n variables has rational degree at least n/2−O(sqrt(n)). In contrast to total functions, we exhibit partial functions that witness unbounded separations between rational and approximate degree, in both directions. As a consequence, we show that for quantum computers, post-selection and bounded-error are incomparable resources in the black-box model. 
    more » « less
  2. Recently, Bravyi, Gosset, and Konig (Science, 2018) exhibited a search problem called the 2D Hidden Linear Function (2D HLF) problem that can be solved exactly by a constant-depth quantum circuit using bounded fan-in gates (or QNC^0 circuits), but cannot be solved by any constant-depth classical circuit using bounded fan-in AND, OR, and NOT gates (or NC^0 circuits). In other words, they exhibited a search problem in QNC^0 that is not in NC^0. We strengthen their result by proving that the 2D HLF problem is not contained in AC^0, the class of classical, polynomial-size, constant-depth circuits over the gate set of unbounded fan-in AND and OR gates, and NOT gates. We also supplement this worst-case lower bound with an average-case result: There exists a simple distribution under which any AC^0 circuit (even of nearly exponential size) has exponentially small correlation with the 2D HLF problem. Our results are shown by constructing a new problem in QNC^0, which we call the Parity Halving Problem, which is easier to work with. We prove our AC^0 lower bounds for this problem, and then show that it reduces to the 2D HLF problem. 
    more » « less